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Translating mosquito viromes into vector
management strategies
Highlights
The mosquito virosphere comprises not
only mosquito-borne viruses, but also
mosquito-specific viruses (MSVs) and
viruses of the mosquito bacterial and
fungal microbiota.

As they can influence host vector
competence for viral pathogens, MSVs
may be key factors shaping arbovirus
epidemiology and can provide valuable
insights into mosquito antiviral immunity
and virus evolution.
Cassandra Koh 1,*,@ and Maria-Carla Saleh 1,@

Mosquitoes are best known for transmitting human and animal viruses. However,
they also harbour mosquito-specific viruses (MSVs) as part of their microbiota.
These are a group of viruses whose diversity and prevalence overshadow their
medically relevant counterparts. Although metagenomics sequencing has re-
markably accelerated the discovery of these viruses, what we know about
them is often limited to sequence information, leaving much of their fundamental
biology to be explored. Understanding the biology and ecology of MSVs can
enlighten our knowledge of virus–virus interactions and lead to new innovations
in the management of mosquito-borne viral diseases. We retrace the history of
their discovery and discuss research milestones that would line the path from
mosquito virome knowledge to vector management strategies.
MSV-based vector control and arbovirus
outbreak risk mapping can be achieved
through advances in our knowledge of
the biology and ecology of MSVs.
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Mosquitoes and their viruses
Mosquitoes participate in natural ecosystems as plant pollinators and food sources for a wide
range of animals. From an anthropocentric point of view, they are also fearsome vectors of
pathogens, including arboviruses (see Glossary), due to the blood-feeding behaviour of (most)
female mosquitoes. The mosquito life cycle spans aquatic and terrestrial habitats, which brings
them into contact with a wide range of microorganisms that then constitute their microbiota.
In particular, the viral community of the mosquito microbiota has garnered significant research
interest due to its potential impact on mosquito vector competence [1–3]. Prior to this, the
notion of mosquito viruses was strongly tinted by the human- or animal-pathogenic viruses they
transmit, such as dengue, chikungunya, Zika, West Nile, yellow fever viruses, and many others [4].

In 1975, the first indication of a mosquito virus not pathogenic to vertebrates was reported in
an Aedes aegypti mosquito cell line. The cell fusing agent virus (CFAV) induced syncytial
cytopathic effects following inoculation into Aedes albopictus cells, as did some flaviviruses,
though it did not replicate in vertebrate cell lines [5]. Its taxonomy as a flavivirus was later
confirmed by shared genome homology [6]. Due to its restricted host range, it was termed a
mosquito-specific virus (MSV). Since then, the mosquito virosphere as we know it has
expanded considerably through discoveries of new MSVs and their distributions, facilitated by
next-generation sequencing (NGS) technologies. Newly discovered mosquito viruses span
many families of positive- and negative-sense single-stranded RNA viruses (except Retroviridae),
double-stranded RNA viruses, and single-stranded DNA viruses. As a significant proportion of
them remain unclassified, they are poised to reshape current virus taxonomies [7]. Notably,
most mosquito viruses discovered by NGS in the past two decades are classified as MSVs
based on genetic relatedness, or rather, genetic distance from known arboviruses.

MSVs that belong to the same genera as arboviruses make attractive platforms for new recom-
binant vaccines and antigens for arbovirus diagnostics [8]. In parallel, the ubiquity of MSVs in
almost every mosquito population investigated has raised many questions regarding their
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Glossary
Arboviruses (arthropod-borne
viruses): sometimes called mosquito-
borne viruses, these are viruses that
cause disease in humans and vertebrate
animals. They are referred to as dual-
host viruses for their ability to infect both
insects and vertebrate hosts.
Endogenous viral elements (EVEs):
fragments of viral genome sequences
integrated into host genomes. In
mosquitoes, where RNA viruses
dominate the discovered virome [7,67],
EVEs are thought to arise due to
retrotransposon reverse transcriptase
activity and are often found flanked by
transposable elements.
Horizontal transmission: the
transmission of infectious agents from
the environment, from food sources, or
from other individuals in the population,
excluding progenitors.
Metagenomics: a study approach
seeking to sequence all genomes within
a given system, including those of the
host, and of associated microbiota and
symbionts.
Metatranscriptomics: a
metagenomics approach where the
total RNA within a given system is
sequenced, capturing gene transcripts
and viral RNA genomes or replication
intermediates.
Mosquito-associated viruses
(MAVs): also called the mosquito
virosphere, this refers to all viruses found
in mosquitoes. These include
arboviruses, MSVs, prokaryotic viruses,
viruses of fungi, and viruses with
undetermined hosts.
Mosquito-specific viruses (MSVs):
also called insect-specific viruses, these
are viruses that infect and replicate in
mosquitoes without the involvement of
vertebrates in their transmission cycle.
Their host range is limited to mosquitoes
or insects, unlike dual-host mosquito-
borne viruses.
Population modification: a type of
vector control strategy seeking to modify,
rather than eliminate, natural vector
populations to render them less efficient
at transmitting disease.
Sentinel animals: susceptible animals
screened for infection of known diseases
for the purpose of monitoring disease
circulation and outbreak risk within a
specific area.
Syncytial cytopathic effects:
morphological changes in cells induced
by viral infection where multiple cells fuse
to form a large multinucleated cell.
implications for the transmission of mosquito-transmitted diseases. Indeed, experimental studies
have revealed the effects of MSV infections on host fitness and susceptibility to arboviruses,
indicating a potential for developing MSV-based vector management strategies [2,8,9]. Here,
we propose the research milestones leading from mosquito virome knowledge towards
concrete entomological measures to prevent or manage arbovirus outbreaks.

Virus hunting
Since the Stollar and Thomas report in 1975, another CFAV isolate has been subsequently
obtained from wild mosquito populations in Puerto Rico [10]. This was followed by the detection
and isolation of other flaviviral MSVs: Kamiti River virus [11,12], Culex flavivirus [13], and Aedes
flavivirus [14], to name a few. Notably, the earliest MSVs discovered were flaviviruses owing to
the method of detection at the time – using pan-flavivirus RT-PCR primers targeting the NS5
gene [15]. Similarly, the use of pan-alphavirus primers led to the discovery of mosquito-specific
alphaviruses, such as Eilat virus (EILV) and Agua Salud alphavirus [16–18].

Often, the detection of MSVs was a serendipitous result of studies aiming to uncover new poten-
tial arboviruses. Pools of mosquito samples were either tested directly or first cultured on highly
permissive Ae. albopictus C6/36 cells, followed by testing of cell culture media when cells
displayed cytopathic effects from viral infection.

When studies began performing NGS on cultured virus isolates, full virus genome sequences
became more readily obtainable [19–21]. Later, the application of NGS approaches on mosquito
samples without prior culture (i.e.,metagenomics) sharply accelerated the rate and diversity of
mosquito virus discovery [22–24]. NGS has since become a mainstay in characterising and
profiling mosquito viromes. The gradual shift from PCR-based to NGS-based virus discovery
approaches reflects a broadened expectation of the diversity of mosquito viromes to be uncovered.

Studies on mosquito viromes typically follow one of the four pipelines depicted in Figure 1, each
providing different potential insights (Table 1). Methodology choice is often a balance between
cost and obtainable information. For example, sample species identification may be performed
either through morphological or molecular methods [e.g., mitochondrial cytochrome oxidase
subunit 1 (COI) gene or rRNA sequences]. Morphological identification is time-consuming and
skill-intensive, whereas molecular identification requires laboratory equipment and reagents.
Samples may be processed as pools to maximise the probability of detecting new viruses, or
as individuals to allow the analyses of prevalence rates and diversity measures at a finer resolu-
tion. As viral loads vary considerably between individuals, it may be useful to store biological ma-
terial of individuals prior to pooling under careful conditions for later qPCR. While extracted viral
RNA may be stable at −80°C, storing homogenised or intact mosquitoes in appropriate
stabilisation buffers such as RNAlater™ (Invitrogen) or others is essential for long-term viability
without compromising viral infectivity for isolation purposes [25–27].

Although whole bodies of adult mosquitoes are the most common sample type, studies may also
choose to focus on immature stages (larvae or pupae) or on specific tissues (e.g., salivary glands
and midgut, which are key infection barriers to arbovirus transmission [28]) to gain information
on tissue tropism, transstadial stability, and potential impact on vector competence [29,30].
However, it should be noted that MSVs detected in larval samples include those acquired from
the aquatic habitat and those vertically transmitted.

Isolating potential viruses by cell culture prior to molecular analyses ensures the detection of only
viruses able to infect a mosquito host, while testing non-cultured samples would capture viruses
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Figure 1. Mosquito virome discovery
pipelines. Molecular detection and
discovery of viruses are achieved by
reverse-transcription PCR (RT-PCR) or
by next-generation sequencing (NGS).
Mosquito samples are either directly
tested or first cultured in cells.
Abbreviation: EVE, endogenous viral
element.
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Transstadial: the maintenance of an
infectious agent in an individual across
life stages.
Truncated open reading frames
(ORFs): a series of nucleotides coding
for amino acids ending in a stop codon.
A truncated ORF is shortened or
incomplete in such a way that it is
unlikely to produce a functional protein.
Vector competence: the capacity of
an insect vector to acquire, propagate,
and transmit a pathogen to a vertebrate
host.
Vector control strategy: measures to
limit the spread of vector-borne diseases
that are directed towards the vector
population.
Vertical transmission: the transmission
of an infectious agent from progenitors
(maternal or paternal) to the offspring.
Virome: the collection of viral genomes
within a given system.
of mosquitoes as well as viruses of ingested biological material and viruses of the bacterial
and fungal communities of the mosquito microbiota. The latter is particularly the case for
metatranscriptomics where NGS is performed on total RNA. Although such analysis provides
important information on the mosquito’s ecological context, further investigations are necessary
to ascertain the natural host of detected mosquito viruses. Alternatively, small RNA sequencing,
in which RNAs 15–30 nucleotides long are selectively sequenced, allows the detection of
mosquito-infecting viruses based on the activity of the mosquito RNA interference (RNAi) antiviral
immune response (Box 1). Given that actively replicating viruses produce small RNAs of a distinct
size, putative viruses may be detected based on their small RNA profiles instead of on sequence
similarity to records in public virus databases [31–33].

Limitations and caveats in virus discovery
Because unbiased virus metagenomics captures all viruses associated with the mosquito
sample, viruses of fungi or plants may be erroneously classified as mosquito viruses in pipelines
12 Trends in Parasitology, January 2024, Vol. 40, No. 1
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Table 1. Potential insights and biological resources obtainable from virus discovery pipelinesa

Virus discovery Within a known 
taxon

Culturable viruses 
within a known 
taxon

Culturable viruses All mosquito viruses

Virus isolates Not obtainable Yes Yes Not obtainable

Host range May be detected in 
multiple species

Testable Testable May be detected in 
multiple species

Phylogeny Yes Yes Yes Yes

Abundance 
quantification

With qRT-PCR With qRT-PCR Reads-based or 
with qRT-PCR

Reads-based or 
with qRT-PCR

Full virus genome With targeted RT-
PCR and and 5’ and 
3’ RACE-PCR

With targeted RT-
PCR and and 5’ and 
3’ RACE-PCR

Yes Yes

Prevalence and 
distribution

Yes Yes Yes Yes

Diversity factors Yes Yes Yes Yes

EVEs and bacterial or 
fungal metagenomics

Not obtainable Not obtainable Not obtainable Yes

aAbbreviations: NGS, next-generation sequencing; RACE, rapid amplification of cDNA ends PCR; RT-PCR, reverse-
transcription PCR; qRT-PCR, quantitative real-time PCR.
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without isolation by cell culture. For example, several viruses from the family Totiviridae have
been recently reported in Anopheles, Aedes, and Culex samples [32–35]. Members of this
virus family are known to infect fungal, plant, animal, and protist hosts. Although some
mosquito-associated totiviruses phylogenetically cluster apart from totiviruses of other hosts
[34], those that are placed alongside fungal totiviruses require closer scrutiny to determine
their true natural hosts. In this case, a metagenomics approach that also characterises the fun-
gal microbiota could reveal co-occurrences with certain fungi, providing evidence that these vi-
ruses have fungal hosts.

Along the same vein, the status ‘mosquito-specific’ is often conferred on novel viruses based
on phylogenetic relatedness to another purported MSV with no empirical evidence for the inability
to proliferate in animal cells. However, the majority of new entries to virus databases are taxonomi-
cally unclassified [7]. Without phylogeny to indicate their natural host, there is a possibility that some
of these viruses represent unknown arboviruses. Metagenomics studies on sentinel and suspected
reservoir animal hosts or experimental infection of culturable viral isolates could later identify these new
viruses as arboviruses [35]. Hence, the term ‘mosquito-associated virus’ (MAV) is preferable until
mosquito specificity has been proven.

Both RT-PCR and NGS approaches produce virus genome data and rely on sequence similarity
searches against public databases to identify viruses or their nearest known relative. As such,
care should be taken on several fronts. First, the quality and completeness of submitted virus
genome recordsmust be strictly controlled for accurate virus identification and taxonomic assign-
ment in future virus discovery [36]. To facilitate this, a guideline for the minimum required informa-
tion of an uncultured virus genome submission has been proposed [37]. Second, unregulated
nomenclature of ‘newly discovered’ viruses can be problematic as it results in multiple virus
Trends in Parasitology, January 2024, Vol. 40, No. 1 13
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Box 1. The small RNA pathways in mosquitoes

RNAi is a conserved antiviral defence mechanism in insects. It is one of the three small RNA-based pathways defined by
their functions, the protein actors, and the sources of RNA substrate involved in their biogenesis: the miRNA pathway, the
siRNA pathway, and the PIWI-interacting RNA (piRNA) pathway [78].

The miRNA pathway functions in gene expression regulation and is activated by endogenous premature miRNA hairpins
encoded within the host genome. The siRNA pathway is one of the major antiviral immune responses in insects and uses
virus-derived double-stranded RNA as a pathogen-associated molecular pattern (PAMP). Activation of this pathway
results in the production of 21-nucleotide single-stranded siRNAs that serve as sequence-specific guides within an
RNA-induced silencing complex (RISC), which targets and cleaves complementary virus genomemolecules. As all groups
of viruses produce a double-stranded RNA intermediate during genome replication, the siRNA response is broad-acting
yet specific to actively replicating viruses. The piRNA pathwaywas thought to function primarily in genome defence against
transposable elements, using single-stranded transcripts from genomic piRNA clusters as precursors. However, virus-
derived piRNAs have been reported for several infecting viruses [79]. In both cases, this pathway generates single-stranded
primary and secondary piRNAs between 25 and 31 nucleotides long. The two populations respectively show U1 and A10
nucleotide biases and a ten-nucleotide sequence overlap characteristic of a ping-pong amplification cycle [78].

The viral targets of RNAi activity can be discerned through small RNA sequencing, characterised by an abundance of 21-
nucleotide small RNAs, which can be assembled to reconstruct full-length virus genomes [31–33]. Distinct from replicating
viruses that may trigger both the siRNA and piRNA pathways, EVE transcripts would only induce the production of larger
piRNAs [32,33].

Trends in Parasitology
names, often based on their geographic associations, given to the same viral species [38]. In such
cases, virus database querying would return several matches, and manual curation is needed to
ascertain whether the query virus is related to a single virus with multiple names or to two or more
viruses equidistantly. Third, in most cases the taxonomy of a new virus cannot be determined due
to the unassigned taxonomy of its closest relative [7]. New viruses are being discovered at a pace
that exceeds that at which the International Committee on Taxonomy of Viruses (ICTV) receives
and ratifies new taxon proposals. This may naturally be resolved with time if deliberate efforts are
made to classify reported viruses. Fourth, sequence-based virus identification is inherently limited
to within a certain divergence range from existing database records. Currently, there are undoubt-
edly putative viral genomes below an arbitrary sequence similarity threshold that end up as ‘dark
matter’ in metagenomic datasets. Thesewill eventually be illuminated by reanalysis of published se-
quencing libraries as the virus catalogue expands [39].

It is worth mentioning that the expansion in known virus diversity owing to metagenomics has
sparked discussions on how to define virus species based on their genome sequences. Historically,
arbovirologists, clinicians, and epidemiologists found it useful to classify mosquito viruses based
on their ecology, biological properties, host association, or disease phenotype. By contrast, virus
taxonomy is principally based on evolutionary histories and is regularly revised. These two distinct
approaches to virus classification could cause issues that are succinctly outlined by Blitvich and
colleagues following the abolishment of the viral family Bunyaviridae [40]. A consensus roadmap
for a universal and long-term virus taxonomy was recently reached which affirms evolutionary rela-
tionships as the foundation of virus taxonomy as well as the complementary value of phenotypic
properties [36].

Finally, endogenous viral elements (EVEs) pose an additional challenge in virusmetagenomics
as they are ubiquitous in the genomes of Ae. aegypti and Ae. albopictus. They are likely to also be
present in other mosquito species [41]. Distinguishing EVE-derived transcripts from viral genomic
RNA is a critical step in NGS metagenomics analysis. Characterising EVEs within mosquito
genomes is therefore important as EVEs provide insights into virus–host co-evolution histories
as markers of ancient viral infections. Furthermore, unidentified EVEs in reference host genomes
can result in the removal of cognate but genuine viral transcripts during the host read filtering step.
Within metagenomic data, EVE contigs can be recognised by certain characteristics: having
14 Trends in Parasitology, January 2024, Vol. 40, No. 1
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regions that share homology to viral and host sequences within a single contig, having truncated
open reading frames (ORFs), or containing fragments of known transposable elements. Small
RNA sequencing can also be beneficial here, as EVE-derived small RNAs range from 24 to 30
nucleotides in length whereas replicating viruses characteristically produce small RNAs of 21
nucleotides (Box 1) [31–33].

The path to vector management strategies
MSVs may serve as cornerstones for new clinical and entomological innovations to tackle the
spread of arboviruses [8,42]. On the clinical side, several promising vaccine candidates against
flaviviral arboviruses – West Nile, yellow fever, Zika, and dengue viruses – have emerged using
the mosquito-specific flaviviruses Binjari virus (BinJV) or Aripo virus as genomic backbones
[43–47]. Similarly, among alphaviruses, the mosquito-specific EILV has given rise to vaccine
candidates against the chikungunya virus, and the eastern and Venezuelan equine encephalitis
viruses [48,49]. These technologies were preceded by experimental studies on the biological
properties of the candidate MSVs [17,50]. Due to their host-restricted nature, these recombinant
virions can also serve as immunologically relevant antigens for diagnostics development under
lower biosafety conditions [51,52].

On the entomological side, modifying the mosquito viral microbiota to reduce vector susceptibility
to arbovirus infections is an intriguing avenue of biological vector control in endemic regions. In
parallel, understanding the impact of the mosquito viral microbiota on vector competence could
improve arbovirus outbreak risk mapping and inform public health decisions in deploying preven-
tative vaccine campaigns or short-term vector control measures. However, for the majority of
discovered MSVs, our knowledge stops at the level of genomic sequence information. Some
open questions on MSV biology, ecology, and evolution have been put forward by Altinli et al.
[9]. Here, we outline the essential attributes and required knowledge that would pave the way
towards entomological applications (Figure 2, Key figure).

Virus isolation
The number of cultured MAV isolates is a small proportion of the number of detected viruses
based on genomic data. This may be largely due to a lack of suitable mosquito cell lines – MAV
isolation protocols principally rely on the use of Ae. albopictusC6/36, which are ideal for virus pro-
duction given the loss-of-function mutations in a key protein within the antiviral RNAi machinery
[53]. Although there have been instances where MSVs from Culex, Anopheles, and even
Coquillettidia mosquitoes were able to propagate in C6/36 cells [16,17,54], the use of this cell
line imposes a fine sieve in regard to which MSVs will go on to shape our knowledge of mosquito
virus biology. While C6/36 are naive, samples of commonly used mosquito cell lines of Aedes
(Aag2, U4.4, Aa23) and Culex (Hsu, CT) origins have been found persistently infected with
MSVs [55–57]. As such, naive samples of these cell lines or new cell lines from different mosquito
genera would be valuable tools for virus isolation.

Host range
As mentioned, it is crucial to test the host range of isolated MAVs to ascertain their mosquito-
specific status in a repertoire of invertebrate and vertebrate cell lines, including mammalian,
birds, reptiles, amphibians, and fish [16,17,54]. In addition, conducting in vivo assays in live
mosquitoes would permit insights into infection dynamics and tissue tropism – special attention
should be given to the salivary glands. A caveat for these experiments is that, although infection
by intrathoracic injection is an efficient method to produce infection and is commonly performed,
it does not recapitulate natural transmission routes and may not give information on whether the
mosquito can orally acquire the virus.
Trends in Parasitology, January 2024, Vol. 40, No. 1 15
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Key figure

Roadmap from mosquito virus discovery to entomological applications
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Figure 2. Incredibly prevalent and diverse, mosquito viruses play an important role in the disease ecology of arboviruses.
Utilising the mosquito viral microbiota to control the spread of mosquito-borne viruses is a promising prospect, but key
biological properties and attributes of mosquito-specific viruses (MSVs) of interest remain to be established through
experimental research. MSVs can serve as a tool for biological vector control or as important variables in arbovirus
outbreak risk maps.

Trends in Parasitology
Interference with arboviruses
A multitude of experimental studies have reported negative or positive effects or interferences by
certain MSVs on the replication and dissemination of arboviruses within a shared mosquito host
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[56,58–62]. Naturally, this fundamental attribute determines the epidemiological importance of an
MSV. Thus, MSV–arbovirus interactions should be tested in different vector–arbovirus systems.
The mechanism behind these interference phenotypes is currently a subject of highly active
research. The challenge of ‘curing’ a mosquito or a cell line from an infecting MSV hinders
mechanistic understanding of MSV interactions. To date, only two studies have demonstrated
methods to clear MSVs from persistently infected Ae. aegypti Aag2 cell lines, permitting insights
into MSV impact on arbovirus interactions and host antiviral immune responses [63,64].

Inevitably, in assessing arbovirus interference, some experiments will yield no-effect outcomes.
Such results may be under-reported in traditional scientific dissemination channels because
they are deemed to be of lesser impact. We caution that this could lead to inefficient allocation
of resources where the same research questions are investigated repeatedly. No-interference
virus–virus interactions following rigorous investigations are therefore valuable knowledge
advances.

Persistent infection and transgenerational transmission
The capacity to establish persistent infection and to disseminate into host reproductive tissues
are critical for transgenerational transmission of artificially transinfected symbionts. The latter
would allow self-propagation of any MSVs of interest within target mosquito populations as
part of a population modification vector control strategy. It would be beneficial to know how
MSVs of interest are maintained in their natural ecosystems, which may involve both horizontal
transmission and vertical transmissionmodes. Only a small number of experimental studies
have sought to characterise the transmission modes of flaviviral and alphaviral MSVs [65,66].
Virome studies on individual mosquitoes revealed the existence of mosquito core viromes,
shaped primarily by host species [34,67]. Notably, these core viromes are maintained by vertical
transmission, displaying transgenerational and transstadial stability [29,68].

Field robustness
Infection, transmission, and arbovirus interference phenotypes observed under carefully
controlled laboratory settings may not extrapolate well into field conditions. As with any vector
control strategy, a deciding factor on feasibility is whether the desired phenotypes from viral
microbiota modulations persist in the field without fitness and reproductive costs.

Prevalence profile
Prevalence profile information is largely derived from virome studies, but this is rarely comprehen-
sive due to differences in study scopes and aims, resulting in differences in collection methods,
seasonality, sampling sites, and other variables. Known vector species circulating in urban or
periurban environments tend to be the focus, whereas arbovirus outbreaks often begin from a
zoonotic spillover event and are vectored by forest-dwelling mosquito species in close proximity
to animal hosts. Longitudinal observations are rare, and female mosquitoes are prioritised given
their blood-feeding behaviour, obscuring variations driven by season and sex. It is also possible
that important ecological metadata or high-risk localities are inadvertently missed.

Perhaps the most comprehensive vector virome diversity maps available are of the Ae. aegypti
and Ae. albopictus mosquitoes, considered the most important arbovirus vectors given
the global public health burden presented by the diseases they transmit [2,7]. The collective
sample numbers and geographical breadth in sampling locations have shed light on the factors
shaping mosquito virus diversities [29,34,60,67]. Comparatively, there have been fewer investiga-
tions into Culex and Anopheles viromes, and even fewer still in forest-dwelling genera such as
Haemagogus or Sabethes.
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Outstanding questions
Can we predict the nature of interactions
between mosquito-borne viruses and
MSVs?

Can themosquito core virome serve as
a platform for paratransgenesis?

What are the titres of MSVs in the field?
Do viral titres vary with acquisition
mode, that is, via horizontal, venereal,
or vertical transmission?

Can the mosquito viral microbiota
alter the evolutionary trajectory of
arboviruses?

How does the virome of polar
mosquitoes compare with that of the
rest of the globe?

Do the two Ae. aegypti subspecies
(formosus and aegypti) differ in their
viromes?
Taken together, virome data are often too fragmented in spatiotemporal metadata to make
meaningful associations between the virus ecology of the local mosquito population and arboviral
disease incidence. To accurately generate outbreak risk maps that factor in the viromes of
specific mosquito populations, continued and routine surveillance on vector species and epide-
miologically relevant animal hosts, in combination with human serological data, must be
conducted by relevant stakeholders, such as the local public or veterinary health authorities.
Significant resources and cohesive political support are needed to achieve this.

Whole community interactions
The viral microbiota of individual mosquitoes comprises between four and 25 viruses and most
commonly include members of the Phenuiviridae, Totiviridae, Orthomyxoviridae, Rhabdoviridae,
and Tymoviridae virus families [7,34]. A vector control strategy based on MSVmodification would
have to consider the interactions between desirable arbovirus-suppressing MSVs and other
members of the viral microbiota.

Certain bacterial and fungal microbiota of mosquitoes also have profound effects on mosquito
vector competence [3,69]. For example, a gut bacterial symbiont of Anopheline mosquitoes,Delftia
tsuruhatensis TC1, inhibits malarial Plasmodium development through the action of a secreted
biomolecule [70]. These microorganisms have been proposed as biocontrol agents against
mosquito-borne diseases [56,57]. The endobacterium Wolbachia is of particular importance
here as it is currently deployed as a biological vector control strategy against dengue virus in
14 countriesi. However, Wolbachia has been shown to influence the titres of certain MSVs
[71–74]. Hence, it is imperative to understand the impact of whole community interactions on over-
all vector competence as interactions between MSVs and other biocontrol agents could alter the
efficacy of these interventions. In the case of Anopheles gambiae, which is a natural host for
Wolbachia as well as a vector of the O’nyong-nyong virus and Plasmodium falciparum, these
multi-microorganismal interactions reach a new level of complexity to be untangled [75–77].

Concluding remarks
Virome studies have expanded our knowledge of the mosquito virosphere to great depths.
Although we have barely scratched the surface of the biology and ecology of MSVs, these viruses
may significantly change our perspective of arbovirus epidemiology and bring about innovations
in entomological approaches towards arboviral disease management. To achieve this, transdis-
ciplinary advances beyond the laboratory are needed, combining virus–virus interactions, medical
entomology, vector-borne disease epidemiology, and risk modelling.

While we have focused on the immediate research milestones to bridge the gap between virus
genome discovery and vector management strategies, there are other fascinating questions
about mosquito antiviral immunity and virus evolution to explore (see Outstanding questions).
Our favourite ones are: can the genomes of MSVs give insight into how dual-host replication
evolved? What determines virus specificity for mosquito hosts? Are viruses with broad mosquito
host rangesmore likely to emerge as vertebrate pathogens?Canmosquito-associated prokaryotic
viruses modulate vector competence through dysbiosis? These inquiries could lead us to novel
insights into the complex interactions between mosquitoes and their viruses.
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