ELSEVIER

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Current Opinion in

Microbiology
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Persistent infection is a situation of metastability in which the
pathogen and the host coexist. A common outcome for viral
infections, persistence is a widespread phenomenon through
all kingdoms. With a clear benefit for the virus and/or the host at
the population level, persistent infections act as modulators of
the ecosystem. The origin of persistence being long time
elusive, here we explore the concept of ‘endogenization’ of viral
sequences with concomitant activation of the host immune
pathways, as a main way to establish and maintain viral
persistent infections. Current concepts on viral persistence
mechanisms and biological role are discussed.
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Introduction

Since the discovery of the first virus, Tobacco Mosaic
virus, in 1892 there has been continuous interest in un-
derstanding virus—host interactions. Almost all of the
studies addressing these interactions are based on dele-
terious or pathogenic viruses with an obvious medical or
agricultural impact. Nowadays, thanks to the advent of
new techniques such as next generation sequencing, new
windows are being opened in our understanding of
viruses and their effects on the host. In general terms,
infections can be grouped into two categories, regardless
of the infecting agent (virus, viroid, bacterium, fungus or
any parasite in general) or the host (bacteria, fungi, plants,
and animals): firstly, acute, or secondly, persistent (com-
prising latent or chronic infections, and a particular case
for mutualistic infections). A virus acute infection is
characterized by a high viral replication rate and the
production of a large number of progeny. Replication is
transient in an individual host, as it is limited either by the
death of the host (and/or cells inside the host) or by the
host immune responses. A persistent infection lasts for

longer periods of time and may be the result of an acute
primary infection that is not cleared. In this case, the
ability of the virus to be transmitted to other organisms or
offspring of the host is maintained. Within this group, a
latent infection involves periods, sometimes extensive, in
which the host produces no detectable virus. In contrast, a
chronic infection produces a steady level of virus progeny.
Mutualistic infection is less known and characterized, but
may be one of the most widespread kinds of infection. In
such kinds of infection, viruses have a positive effect on
the host. In a general manner, these interactions are
durable in time and in many cases the viruses have been
adopted by the host (endogenous virus) [1,2°%,3,4].

Although the boundaries between these different kinds of
infections are sometimes blurry, in this review we will
focus on persistent infections and their repercussions on
the host.

Persistent infection throughout the different
kingdoms

Persistent infection seems to be a common outcome in
nature, partly because of the positive effects of parasites
under some conditions [5,6°°]. It has been proposed that
asymptomatic infections could contribute to resistance to
further infection [7°,8]. It has also been proposed that
emerging viruses such as HIV [9], SARS [10] or influenza
[11] have ancestors that are not pathogenic; rather, they are
persistent or endemic viruses in other hosts. In this context
it is tempting to think of viruses as modulators of the
ecosystem. For instance, farmed animals and plants are
frequently plagued with disease-causing or lethal virus
infections. The lack of heterogeneity in the host popu-
lation, together with the overcrowding of individuals, may
create conditions where the asymptomatic virus can switch
to an acute infection. This infection may then force the
appearance of less susceptible host variants or may reduce
the host population to a size that can no longer support viral
transmission or dissemination. In both cases, even when
the acute infection has a cost for some or many individuals,
the host population may gain benefits at the species level.

A persistent infection could be considered as the most
well-adapted or successful host—pathogen interaction.
From a viral standpoint, persistence has benefits at differ-
ent levels:

(1) A persistent infection allows virus production and
assures the transmission of viral genetic material over
a longer period of time.
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(i1) Because there is low or no fitness cost to the host, a
persistence state could permit multiple infections
(with the same or different viruses) that could be the
source of new genetic variability and complexity.

(i11) Since the host’s health is not significantly affected, at
least in the short term, a mobile host can disseminate
virus to more hosts within the same environment or
to hosts in a new environment.

From a host standpoint, persistence is profitable because:

(1) Persistently infected organisms are resistant to super
infections with related viruses, a phenomenon
known as viral accommodation [12].

(1) Persistently infected populations (such as mice) can
carry and transmit viruses to sensitive populations
and eventually settle and/or replace them (i.e. mice
haystack colonization [13]). In this way, the
persistently infected original population can estab-
lish in a new area.

(i1i) Organisms persistently infected with mutualistic
viruses show an increased antiviral response [14,15].

(iv) Mutualistic viruses can help the host by supplying
new genes or through epigenetic changes of the host
genome with beneficial results [16].

Examples of persistent infection can be found in almost
all the organisms ('Table 1). Below are summarized some
examples:

- The close relationship between bacteria and lyso-
genic phages is very well documented. Lysogeny
typically results in bacterial resistance to infection by
homologous or related phages. Even if phages are not
continuously replicating, the viral genomes are always
present in the host, in many cases providing
advantages for colonization [17,18°], for example
during the competition for a new niche. Other related
situation is the phage production of toxins such
as Shiga toxins that allow nonpathogenic gut bacteria
to become invasive (for more examples see review
[19D.

- Viral infections in fungi is a particular and almost
extreme case of persistent infection, since mycoviruses
have lost the extracellular phase of their viral replication
cycle, and as a consequence, depend on the host for
transmission. Viral infected fungi can infect plants as
described by Marquez ¢z a/l. [6°°]. In this threesome,
Curvularia protuberance (a fungus) confers heat toler-
ance to the plant Dichanthelium lanuginosum through the
presence of the mycovirus Curvularia thermal tolerance
virus [6°°].

- Viruses belonging to the Partitiviridae family and the
Endormavirus genus can establish persistent infections
in plants. One illustrative example is the blueberry

latent virus (BBLYV), a dsRNA virus that is present in
more than 50% of blueberry crops in the United States
[20]. The presence of BBLLV was originally associated
with the blueberry fruit drop disorder, but the virus is
widespread in symptomatic as well as asymptomatic
plants. Asymptomatic plants carrying the virus were
followed for several years and never showed signs of the
disorder [20].

- Fish also carry persistent infections, as represented for
the salmonids species carrying the infectious pancreatic
necrosis virus (IPNV). IPNV can produce an acute,
systemic infection that results in high mortality in
farmed salmonids, and a persistent infection associated
with resistance to super infection in surviving fish after
outbreaks [21].

- Mammals are also persistent viral carriers. For instance,
humans support eight types of prevalent, persisting
herpes viruses without a clear fitness cost to individ-
uals. Interestingly, these interactions are highly species
specific, since one of these viruses (human herpesvirus
type 1) is known to produce lethal infections in ape
colonies [22]. Another example is the simian immu-
nodeficiency virus (SIV) that infects more than 40
species of African nonhuman primates. In several of
them, such as African green monkeys, the infection is
nonpathogenic despite a chronically high viremia [23].
However, when Asian macaques are infected with SIV,
they develop AIDS. Interestingly, SIVs from African
nonhuman primates are the ancestors of HIV-1 and
HIV-2 [23].

In summary, all host species have developed different
strategies to control viral infection (i.e. CRISPR in bac-
teria and archaea, plasmid exclusion system in bacteria,
RNA interference (RNAi) in plants, arthopods and
nematodes, adaptive immunity in vertebrates, among
others) and viruses have counter-attacked ensuring their
survival and transmission by developing a myriad of
circumventing defense mechanisms. For instance,
HIV-1 does not induce IFN during infection [24] and
insects and plants viruses developed viral suppressors of
RNAI to avoid the RNAi antiviral response [25]. Regard-
less of the complexity of these relationships, in all king-
doms we can find situations where the antiviral
mechanism is used to reach a metastable equilibrium:
the persistent state.

Persistent infection in arthropods

Among animals, arthropods have been present on earth
from the early Cambrian period of the Paleozoic era and
will likely continue for millions of years to come. We
can hypothesize then that arthropods are better adapted
to viral infection than mammals because the interaction
is much older. Actually, it is well documented that
arthropods coexist with persistent viral infections with-
out fitness cost for the host. Thus, one could view
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Table 1
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Viral persistent infections across kingdoms

Host Virus Viral family Viral Genome Comments Refs
Bacteria
Corynebacterium Phages B and T Siphoviridae (B) dsDNA First phage exotoxin characterized [19,36]
diphtheriae
Escherichia coli 933W and H19B Podoviridae (933W)  dsDNA Two different phages coding for [19,36]
Siphoviridae (H19B) Shiga toxins
Vibrio cholerae ctxd Inoviridae (+) ssDNA Phage coding for Cholera toxin [19,36]
Salmonella enterica SOpEd Myoviridae (sop) Linear dsDNA Phage protein involved in cellular [36]
GIFSY-2 Siphoviridae (GIFSY) invasion
GIFSY-3
Mycoplasma arthritidis Mycoplasma Unclassified Linear dsDNA Phage adhesion protein for bacterial [36]
arthritidis virus 1 dsDNA phages host attachment
Fungi
Cryphonectria parasitica 9B21 Reoviridae Segmented Virus reduces fungus virulence [37]
dsRNA
Curvularia protuberance  Curvularia thermal Unclassified Bi-segmented Virus infected fungus confers heat [6°°,38]
tolerance virus dsRNA tolerance to plants infected
with the fungus
Plants
Cannabis sativa Cannabis cryptic virus Partitiviridae Bi-segmented Asymptomatic widespread hemp [39]
dsRNA virus. Seed-transmissible
Vaccinium spp. Blueberry latent virus Partitiviridae dsRNA Asymptomatic [20]
Nicotiana benthamiana ~ Cucumber Mosaic virus Bromoviridae (+) ssRNA Virus confers drought tolerance [40,41]
Animals
C. elegans Orsay virus Nodaviridae Bi-segmented (+) Virus cause damage in intestinal [42]
ssRNA cell, with little impact on
the whole organism
Macrobrachium White spot Nimaviridae dsDNA Virus-challenged shrimp larvae [43]
rosenbergii syndrome virus remain infected for life without
signs of disease
Aedes aegypti Rift valley fever virus Bunyaviridae (=) ssRNA Virus enhance ability of mosquito [14]
to find blood vessels
Drosophila spp. Drosophila C virus Dicistroviridae (+) ssRNA Infected adult flies get a boost [14]
in reproduction
Salmo salar Infectious pancreatic Birnaviridae Bi-segmented Viral infected survivor salmons [44]
necrosis virus dsRNA are protected against future disease
Clupea pallasii Chronic viral hemorrhagic Rhabdoviridae (—) ssRNA Viral infected survivor herrings are [8]
septicemia virus protected against future disease
Meleagris gallopavo Turkey hemorrhagic Adenoviridae dsDNA Avirulent strain produce persistent [45]
enteritis virus infection and is used as
a live-virus vaccine
Miniopterus magnate Bat-CoV 1A Coronaviridae (+) ssRNA Asymptomatic [46]
Mus musculus Lymphocytic Arenaviridae Segmented (—) Specific viral sequences persist as [15,33]
choriomeningitis virus ssRNA DNA forms
Homo sapiens Coxsackie virus B4 Picornaviridae (+) ssRNA Virus could increase or prevent [47]
diabetes risk
Homo sapiens Herpes simplex virus Herpesviridae Linear dsDNA Virus establishes latent infection in [41]

sSensory neurons

persistent infection not as a defect in the antiviral
response, but as part of arthropod immunity. In this
context, we can consider that persistent infection
had been selected as a strategy of survival. In
absence of a conventional immunological memory
(through antibodies), arthropods have found, in the
establishment of persistent infections, a way to control
and lower viral replication. This mechanism is useful

and essential to survive new and more aggressive infec-
tions [26].

The most well-known persistent infections are the arthro-
pod/arbovirus interactions, probably because of the direct
effects on human health and economy. Arboviruses (arthro-
pod-borne viruses) are a group of viruses belonging to
different families that are transmitted by arthropod vectors,
mainly of the mosquito and tick families. Among the most
common arboviruses we can mention dengue virus, sindbis
virus, yellow fever virus, chikungunya virus, Rift Valley
fever virus, L.a Crosse encephalitis virus, and West Nile
virus.
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Role of endogenization of viral sequences in
the establishment of persistent infection

The host—pathogen interaction triggers selection press-
ures in both organisms that constantly need to evolve in
order to adapt. This adaptation sometimes implies
endogenization of the full parasitic organism, as is
the case of the endosymbiont bacterium Wolbachia that
protects fruit flies and mosquitoes against several viral
infections [27,28,29°°] and in other cases, just a part of
the parasite genome. This endogenization can be a
rapid source of variability comparable to that of trans-
posable elements. For the latter, it was shown that
during Sigma virus infection in Drosophila, transposons
insert into different genomic locations, disturbing
protein gene expression and leading to an increased
viral resistance [30], showing that changes to the
genetic makeup of the host can be helpful and rela-
tively quick in producing pathogen resistance. During
population evolution, the appearance of spontaneous
mutations with a positive effect on adaptation is a very
slow process when compared to the effects of endo-
genization of parasites and/or transposition triggered by
the presence of the parasite.

In the last decade, several works have shown the ‘endo-
genization’ of viral genomes belonging to nonretroviruses
in several different species [1,2°%,4,15,31,32]. It is tempt-
ing to propose that nonretroviral DNA endogenization is
actively involved in antiviral immunity because of three
main lines of evidence: firstly, studies in bees (Apis
mellifera) have shown that an important percentage (more
than 30%) of the insect population carries a segment of
the Israeli Acute Paralysis Virus (IAPV) ((+) ssRNA) in
their genome and this subpopulation became virus resist-
ant [32]; secondly, nonretroviral DNA sequences with a
potential role on immunity have also been described in
mammals [15,33]. In the case of lymphocytic choriome-
ningitis virus (LCMYV), the acquisition of some parts of
the viral genome by spleen cells is correlated with the
maintenance of viral antigens (i.e. specific antibodies).
Interestingly this DNA form was produced only in the
natural host [15], reinforcing the idea that persistent
infections play a role in the modulation of the immune
system; thirdly, arbovirus-derived piRNAs have recently
been detected in mosquitoes [34°,35°]. Cellular piRNAs,
derived from only one of the DNA strands have been
linked to both epigenetic and post-transcriptional gene
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Hypothetical involvement of endogenized viral DNA in RNAi-mediated antiviral defense. Viral dsRNA is the danger signal that triggers the antiviral RNAi
response. It is commonly accepted that during viral replication, dsRNA molecules (canonical) are produced and they are the substrate of Dicer.
Whether DNA from viral origin is involved in a RNAi response remains to be confirmed. However, one could postulate a role of the endogenized viral
DNA in antiviral response through the production of different molecules of dsRNA (i-iv). Some of these molecules could involve the viral RdRp (i and ii)
while others could be reminiscent of endo-siRNA biogenesis (iii and iv).
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silencing of retrotransposons and other mobile elements.
The source of viral-derived piRNAs and their biogenesis
remains uncharacterized. We could then hypothesize that
in insects, and maybe in other organisms, DNA from
nonretroviral RNA viruses is produced, endogenized and
boosts the antiviral response under the form of viral
siRNA or viral piRNAs derived from a transcript pro-
cessed from that same DNA.

Until now parasitce DNA endogenization has been
considered as a rare event, since it has been assumed
that only endogenization on the germ line has an effect
(positive or negative). However, somatic or ‘nontrans-
missible endogenization’ may be much more frequent
than expected, since the integrity of the genome in the
soma could be more relaxed. In this context, it is
tempting to postulate that this somatic endogenization
helps in the control of viral infection by the same
mechanism that transposons are controlled, that is,
endo-siRNA or other RNAi related pathway. This
system could be of particular interest contributing,
for example, to the priming or to the acquisition and
maintenance of a systemic immunity.

Interestingly, this hypothesis postulates that these DNAs
from viral origin should be involved in dsRNA biogenesis
in order to trigger small RNAs-mediated immunity. Sev-
eral different sources for the dsRNA other than viral
dsRNA from replication intermediates that triggers the
RNAI response can therefore be possible (Figure 1):
firstly, a single-stranded viral transcript generated from
the DNA form would anneal to the viral genome (either
the (+) or the (—) strand depending on the orientation of
the transcript); secondly, a single-stranded viral transcript
generated from the DNA form would be template for the
viral RNA-dependent RNA polymerase (RARP) generat-
ing dsRNA that will trigger the siRNA pathway; thirdly,
two complementary single-stranded viral transcripts
generated from different loci or by convergent transcrip-
tion; fourthly, a single-stranded viral transcript generated
from the DNA form would fold back on itself forming
secondary structures (dsRNA) that could be recognized
by the RNAi pathway, similar to endo-siRNAs. It is still
unknown whether these new DNA molecules of viral
origin are heritable or not and whether this mechanism is
universal. However, in a process that strikingly recalls the
canonical adaptive immune response in mammals, this
acquired DNA could improve the ‘innate’ antiviral
response of the host sufficiently enough to guarantee
the survival and reproduction of the host and therefore,
the viral propagation. Finally, we could consider the
endogenization mechanism as an alternative view of
immune memory (protection from a secondary exposure
to the same ‘antigen’). Despite the absence of specialized
memory immune cells in plants and invertebrates, there is
a ‘DNA memory’ that would allow a rapid response,
limiting pathogen proliferation and spread.
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Closing remarks

Our knowledge about viruses is biased, mainly because of
the evident and urgent need to understand and control
harmful viruses. Nevertheless, more and more evidence
is emerging of a friendlier coexistence and coevolution
between viruses and hosts. The sequencing age has
brought to light that many viruses or parts of them
(whether retroviral in origin or not) are integrated into
the hosts” genome. A majority of these sequences are
remnants of ancient virus infections, analogous to scars or
fingerprints. These remnants present in all species are
not just the result of a random event and force us to re-
think how we understand and conceptualize viral infec-
tions. Nowadays we are becoming aware of the thousands
of viruses among us, but only few of them have a nega-
tive, albeit considerable, impact. In this case, decipher-
ing the mechanism(s) by which the delicate equilibrium
between viruses and hosts is maintained, may serve as a
guide for controlling deleterious acute infections in the
future.
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